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A B S T R A C T

Digital repeat photography and near-surface remote sensing have been used by environmental scientists to study
environmental change for nearly a decade. However, a user-friendly, reliable, and robust platform to extract
color-based statistics and time series from a large stack of images is still lacking. Here, we present an interactive
open-source toolkit, called xROI, that facilitates the process of time series extraction and improves the quality of
the final data. xROI provides a responsive environment for scientists to interactively (a) delineate regions of
interest (ROI), (b) handle field of view (FOV) shifts, and (c) extract and export time series data characterizing
color-based metrics. The software gives user the opportunity to adjust mask files or draw new masks, every time
an FOV shift occurs. Utilizing xROI can significantly facilitate data extraction from digital repeat photography
and enhance the accuracy and continuity of extracted data.

1. Introduction

Although the idea of repeat photography to study environmental
change goes back a century (Stephens et al., 1987; Turner, 2003), using
digital repeat photography has become increasingly popular to monitor
and study the environment for a diverse range of applications such as
studying plant phenology (Berra et al., 2019; de Moura et al., 2017;
Olivera-Guerra et al., 2017; Richardson et al., 2018b; Sonnentag et al.,
2012; Watson et al., 2019; Yan et al., 2019), assessing the seasonality of
gross primary production (Crimmins and Crimmins, 2008; Migliavacca
et al., 2011; Yuan et al., 2018), salt marsh restoration (Knox et al.,
2017), monitoring tidal wetlands (O'Connell and Alber, 2016), in-
vestigating growth in croplands (Liu and Pattey, 2010; Zhou et al.,
2013), and evaluating phenological data products derived from satellite
remote sensing (Richardson et al., 2018c; Seyednasrollah et al., 2018).
However, extracting “clean” and high quality data from a large set of
images often presents three main challenges: (a) delineating region of
interests (ROI) (Richardson et al., 2018a), (b) computational costs
(Filippa et al., 2016a); and (c) handling expected and unexpected field
of view (FOV) shifts (Brown et al., 2016; Moore et al., 2016). All three
issues require careful consideration. Currently, these steps are often
performed in separate, fully supervised stages. An integrated portable

environment with which the user can interactively manage and extract
high quality time series would significantly improve data collection for
environmental studies.

Obtaining quantitative data from digital repeat photography images
is usually performed by defining appropriate ROI’s and, for the red (R),
green (G) and blue (B) color channels, calculating pixel value (in-
tensity) statistics across the pixels within each ROI. ROI boundaries are
delineated by mask files which define which pixels are included and
which are excluded from these calculations. User-friendly software li-
braries to delineate user-defined ROI’s interactively are scarce and
commonly require commercial licenses (e.g. ENVI, MATLAB Image
Processing Toolbox). Additionally, the data extraction process is usually
performed in another environment, the process requires adequate fa-
miliarity with scripting languages (e.g. R (Team, 2018), MATLAB
(MathWorks, 2015), Phenopix R package (Filippa et al., 2016b), Python
(Sanner, 1999) and third-party plugins (Sunoj et al., 2018)), or the tools
are not suitable for general image datasets (Bradley et al., 2010). Thus,
an interactive platform with an easy-to-use graphical user interface that
can integrate ROI delineation and time series extraction is highly de-
sired.

Camera field of view shifts will result in pixels or areas outside of
the original region of interest falling into the masked area, which can
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cause low-quality or even misleading data. Fig. 1 shows two examples
of FOV shifts from the PhenoCam network (http://phenocam.sr.unh.
edu) that was founded in 2008 to study vegetation phenology across
ecosystems of North America using near-surface remote sensing
(Richardson, 2018). After a FOV shift occurrence (e.g. Fig. 1), the
corresponding ROI and mask files should be adjusted (minor shift: ROI
is still in FOV but has moved), redrawn (major shifts: ROI is partially in
FOV) or stopped processing (entire FOV has changed). However, de-
tecting FOV shifts is not a trivial task, particularly for large stacks of
digital images (e.g., 35 million images of the PhenoCam archive
(Seyednasrollah et al., 2019)). Correlation based methods (e.g. phase
correlation or binary correlations) (Gottumukkal and Asari, 2004) or
distance-based methods (e.g. Manhattan distance) (Dhodapkar and
Smith, 2003) has been developed for facial recognition, object detection
and tracking techniques, but they often fail to perform a satisfactory job
on landscape images (e.g. composition of canopy and sky). Moreover,
most of these methods are computationally expensive and require ca-
libration and learning steps (such as site-specific tuning). Therefore, a
simple and quick method to detect FOV shifts could further speed-up
high quality data extraction and management.

Here, we present an interactive, portable and robust framework,
called xROI, with a simple graphical user interface (GUI) with which
the user can define regions of interest (ROI’s), monitor FOV shifts and
extract color-based statistical metrics for a stacked set of digital images.
xROI is an R package that can run on several operating systems. Our
toolkit facilitates the entire process by several orders of magnitude,
reduces human-based errors, and improves data continuity and re-
producibility.

2. Application development

The R language and Shiny package (Chang et al., 2017) were used
as the main development tools for xROI, while Markdown (Baumer
et al., 2014), HTML (Aronson, 1995), CSS (Powell, 2010)and Java-
Script (Mikkonen and Taivalsaari, 2007) languages were used to im-
prove interactivity. R is an interpreted computer language which is
increasingly popular among environmental scientists. Shiny is an add-
on R package that provides a powerful platform for development of
web-based applications (Shiny apps) in R. Shiny apps generally include

three main elements: (1) the user interface (UI), (2) the server-side
engine; and (3) the auxiliary functionalities. The UI is the element in
which the appearance features and graphical user interface are de-
signed. The server element is the engine built to interpret user re-
sponses and react accordingly. Most of the processing and computation
steps are performed inside the server element, while general set-up and
intermediate functions are accommodated inside the auxiliary func-
tionalities. Although Shiny apps are primarily used for web-based ap-
plications hosted on a web server to be used online, we used Shiny for
its graphical user interface capabilities. In other words, both UI and
server modules are run locally from the same machine and hence no
internet connection is required. The xROI’s UI element presents a side-
panel for data entry and three main tab-pages, each responsible for a
specific task. The server-side element consists of R and shell scripts.
Image processing and geospatial features were performed using the
Geospatial Data Abstraction Library (GDAL) (Warmerdam, 2008) and
the rgdal (Bivand et al., 2018) and raster (Hijmans, 2017) R packages.

The xROI R package has been published on The Comprehensive R
Archive Network (CRAN). The latest tested xROI package can be in-
stalled from the CRAN packages repository by running the following
command in an R environment:

utils::install.packages('xROI').

Alternatively, the latest beta release of xROI can be directly down-
loaded and installed from the package GitHub repository:

devtools::install_github('bnasr/xROI'),

however, this requires that the necessary R packages and GDAL library
have already been installed on the local system.

xROI depends on many R packages including: colourpicker, data.-
table, jpeg, lubridate, moments, plotly, raster, RCurl, rgdal, rjson,
shiny, shinyAce, shinyBS, shinydashboard, shinyFiles, shinyjs,
shinyTime, shinythemes, sp, stringr, and tiff. All the required libraries
and packages will be automatically installed with installation of xROI.
The package offers a fully interactive high-level interface as well as a set
of low-level functions for ROI processing. A comprehensive user manual
for low-level image processing using xROI is available from https://

Fig. 1. Two examples of field of view (FOV) shift
at the bartlettir and harvardhemlock PhenoCam
sites. At bartlettir, the original region of interest
after the shift was entirely outside of the field of
view and the post-shift FOV was not relevant for
the study. At harvardhemlock, FOV shift was
minor and redrawing the region of interest fixed
the issue.
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cran.r-project.org/package=xROI/xROI.pdf. The user manual includes
a set of examples for each function. Here we explain the graphical user
interface, which can be launched from an interactive R environment by:

library(xROI)
Launch()

or from the command line (e.g. shell in Linux, Terminal in macOS and
Command Prompt in Windows machines) where an R engine is already
installed by:

Rscript -e 'xROI::Launch(Interactive= TRUE)'

Calling the Launch function opens up the app in the system’s default
web browser, featuring an example dataset to explore different modules
or upload a new dataset of images.

3. Design and structure

xROI includes three main modules: (a) ROI drawing module, (b)
FOV shift monitoring module; and (c) time series extraction module.
Fig. 2 shows the arrangement of each module as separate tab-panels. All
the modules have a server-side and a UI-side which are explained in the
following sections. The modules and how they are linked to each other
are illustrated in Appendix A: Application Flowchart.

3.1. ROI drawing module

The main function of the ROI drawing module is to provide an in-
teractive environment for creating regions of interest (ROI’s) and
storing associated files on a disk space for a later use. The user can load
a set of images using the Image directory button and browse into the
folder containing the data (item 1 in Fig. 2). There are two ways to load
images: (1) using the “PhenoCam format”, and (2) using the filelist.csv

input file. If the user selects “PhenoCam format”, all JPEG images in the
image directory that follow the PhenoCam naming convection
(Richardson et al., 2018a) will be loaded into the app. Time and date
metadata will be automatically assigned to each image based on their
filenames (i.e.< sitename> _<YYYY_MM_DD> _<hhmmss> .jpg,
where MM=01-12, DD=01-31, hh=00-23, mm=00-59 and
ss= 00-59). If the user selects “From filelist.csv”, the software looks for
a comma separated file named “filelist.csv” to obtain information about
how to properly load the dataset. In that case, the user is responsible for
generating the filelist.csv file. The filelist.csv file contains a list of
images and their associated timing and is formatted in the comma-se-
parated-values format as follows. Each row includes one column for the
filename as character strings and six columns for year, month, day,
hour, minute and second of the acquisition date and time, in that order.
Two example rows are presented as follows:

“dukehw_2015_01_01_120109.jpg”,2015,1,1,12,1,9
or
“IMG2012.jpg”,2019,2,5,7,00,00.

The user can explore loaded images using the exploring panel (item 2 in
Fig. 2).

After images are loaded, the first step of generating a new ROI is to
enter metadata for the ROI, including site name, ROI description, ve-
getation type (see Table 1), ROI ID number (a user defined number to
identify ROI for vegetation type); and start and end date and time of the
mask files (item 3 in Fig. 2). The user can create new ROI masks by
drawing polygons around the region of interest on the plotted image.
This is performed using Shiny’s clickOpts functionality. The image that is
used to draw an ROI is called the “sample image”. The sample image
may be used for later references. The user can add new vertices using
single clicks on the image, drawing edges of a polygon. Double clicks
are reserved to close a polygon and start a new one. The user can edit an
existing polygon using the Undo and Erase button (item 4 in Fig. 2).

4

1 

3 

2

Fig. 2. Arrangement of the user-interface items in the ROI drawing module in xROI. (1) loading images, (2) exploring tool to browse images, (3) entering ROI
metadata, and (4) the ROI drawing panel.
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The vector-based polygons are stored as the relative coordinates of
vertices. The polygons can be converted to a rasterized mask using the
Accept button. This step is performed using the GDAL, rgdal and raster
libraries.

To store the generated ROI to disk, we adopted the file structure and
formats of the PhenoCam network (Richardson et al., 2018a). Each ROI
definition consists of an “ROI List” file, one or more mask file(s), and
their corresponding vector-based polygon files. An ROI List file is a CSV
file that contains ROI metadata including owner’s name, primary ve-
getation type, description, list of mask files, their associated start and
end date and times and the sample image filename. Details about for-
matting of the ROI List file are discussed in Richardson et al. (2018a)
and also presented here in Appendix B: Description of ROI List Files.
Vector-based polygon files indicate the relative coordinates of points
defining the region of interest. In fact, polygon files are the raw input
data created by the user in order to generate mask files. Mask files are
raster images containing binary bitmaps of each mask in TIFF format:
black (1) for “included” and white (0) for “excluded” pixels. The vector-
based file, which is size-free, is used to generate a mask file that is the
same dimension as the sample image. Although only mask rasters (in
TIFF format) and ROI list files are directly used to extract the time
series, vector-based information (i.e. coordinates of vertices) are stored
for reference; potential uses include generating new mask rasters for
files with different image dimensions. The user can save all ROI-related
files in the original directory for later reference using the Save ROI
button. The user can also download them as a zipped file using the
Download ROI button. And, because the ROI definitions follow the
standard PhenoCam format, the downloaded ROI files can be proposed
to the PhenoCam data management team for incorporation into the
routine processing, if image data have already been contributed to the
PhenoCam network. The file formats and the naming convention of the
ROI files are presented in Table 1.

3.2. FOV shifts monitoring module

We used a simple, fast and efficient method to detect potential FOV
shifts using the center-line image (CLI) technique (Seyednasrollah,
2017), and to enable the user, with minimal effort, to validate shift
detections. A CLI is a single image raster, representing the entire dataset
as its vertical columns are composed of the center column of each
loaded image. The assembled CLI provides a quick, simple and robust
way to visualize significant changes in the horizon line or canopy tex-
ture. This enables the user to rapidly inspect potential FOV shifts, and
adjust the ROI accordingly. The user can move the mouse pointer over
the CLI to find the date on which an FOV shift has occurred. Clicking on
the CLI will display the image from the corresponding date on the lower
left side of the panel. Fig. 3 shows the built-in CLI processor of xROI that
is used as a shift monitoring module. The user can generate the CLI from
original images, write the generated CLI on the disk space or read a
previously saved CLI from the disk space. Days without images are

shown as black columns (hex code: #000000) in the CLI raster. Besides
the true color RGB raster of CLI, xROI also provides monochromic
images of individual color channels (red, green and blue) and also
brightness, darkness and contrast rasters. Multiple options for visua-
lizing the CLI is to assist the user in detecting FOV shifts with choosing
an appropriate raster. We performed a quantitative analysis to evaluate
the performance of each monochromic images in separating out sky and
canopy pixels. We used the bimodality coefficient defined in Zhang
et al. (2003) as a proxy for detectability power, where higher bimod-
ality coefficients correspond to better separations of pixels. The results
showed that the brightness image and the blue channel were most ef-
fective in separating out the pixels, confirming our visual interpreta-
tion. The analysis is presented in Appendix D: Bimodality Analysis of
the Monochromic CLI.

While the CLI technique can be used to detect most FOV shifts in-
cluding horizontal, and vertical shifts, the method may fall short in
identifying FOV shifts that lacks a strong signal in the CLI image. To
address this limitation, we have implemented an additional function
(“detectShifts”) that can be used for detecting other FOV shifts. The
function evaluates day-to-day correlation values of the brightness and
blue color channels when they are smoothed. It returns a two-column
data frame for daily variability of the brightness and the blue channel.
A sudden decrease in the correlation values may be interpreted as a
potential FOV shift. Note fully automated methods are difficult with
outdoor photography due obscured FOV due to rain, clouds, or fog,
resulting in false positives when no actual FOV shift has occurred. As
the “detectShifts” function is computationally expensive, it is only
available from the command line and not from the UI.

3.3. Time-series extraction module

The time series extraction module is designed to extract color-based
statistics for a selected ROI on the entire image dataset at a specified
time interval (see Fig. 4). The time series data can help the user to make
decision on selecting appropriate polygons that lead to clearer signals in
the final time series. While in the example datasets, we used mid-day
images at an interval of 1 day, though in practice data with higher
temporal resolution can be obtained using all (sub-daily) images, re-
sulting in higher-quality time-series (Sonnentag et al., 2012).

To perform statistical calculations, each JPEG image is read as
three-dimensional array: × ×I[ ]H W C, where H is the number of vertical
pixels (height), W is the number of horizontal pixels (width) and C is
the color channel (1: red, 2: green, 3: blue). The third dimension is to
store three different color channels (red, green and blue, respectively).
Mask rasters, ×M[ ]H W , (in TIFF format) have the same resolution as the
sample image, but unlike the sample image, they are in binary (0 and 1)
format. M is a binary matrix, 1 for pixels within the ROI and 0 for
elsewhere. For a given mask file, the red, green and blue chromatic
coordinates (i.e. RCC, GCC and BCC) are defined as (Sonnentag et al.,
2012):

Table 1
File formats and naming convention of ROI files.

File Format Naming convention* Purpose

ROI List Text/CSV < sitename> _<veg_type> _<ROI_ID_number> _roi.csv ROI metadata
Mask TIFF < sitename> _<veg_type> _<ROI_ID_number> _<mask_ID_number> .csv Raster-based mask file
Polygon CSV < sitename> _<veg_type> _<ROI_ID_number> _<mask_ID_number> _vector.csv Vector-based region of interest

* < sitename> is a character string including the site name entered by the user.< veg_type> is a two-character value indicating the vegetation type as selected
by the user (AG: Agriculture, DB: Deciduous Broadleaf, EB: Evergreen Broadleaf, EN: Evergreen Needleleaf, DN: Deciduous Needleleaf, GR: Grassland, MX: Mixed
Forest, NV: Non-vegetated, RF: Reference Panel, SH: Shrub, TN: Tundra, UN: Understory, WL: Wetland, XX: Other/Canopy).< ROI_ID_number> is a four-digit
integer number as a unique identification number of the ROI for the corresponding vegetation type.<mask_ID_number> is a two-digit integer number identifying
the mask files.
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where RDN, GDN and BDN are average red, green and blue digital
numbers within the masked areas, respectively. Statistical metrics such
as mean, median, 5, 10, 25, 75, 90 and 95 percentiles are derived for
each chromatic coordinate across the entire ROI. The chromatic co-
ordinates calculation essentially normalizes each individual color band
against the total pixel value of the three channels, normalizing for the
total brightness. GCC, in particular is shown to be a reliable metric for
monitoring changes in the environment such as leaf out phenology
(Klosterman et al., 2018), vegetation identification (Woebbecke et al.,
1995), plant health status (Nijland et al., 2014), and biological con-
servation and restoration (Alberton et al., 2017). In addition to chro-
matic coordinates, brightness, darkness and contrast rasters are also
calculated for the region of interest. Brightness is the maximum value
among red, green and blue channel for each pixel. Darkness is the
minimum value among red, green and blue channel for each pixel.
Contrast is the difference between brightness and darkness. The dark-
ness (D), brightness (B) and contrast (C) rasters (Mao et al., 2014) are
calculated as:

=D i j I i j c H W[ , ] min [ , , ], i (1, 2, .., ), j (1, 2, .., )
c (1,2,3)

=B i j I i j c H W[ , ] max [ , , ], i (1, 2, .., ), j (1, 2, .., )
c (1,2,3)

=C B D

The user can change the computation interval at which the time
series is extracted. To extract sub-daily time series, the user can simply
import a data set consisting of sub-daily images and change the interval
value to extract time-series with different temporal resolution. Note
that timeseries generated with different interval values are not based on
the same concept as the PhenoCam 1-day and 3-day timeseries. Higher
interval values in xROI simply mean skipping the images in between
each interval, whereas PhenoCam 1-day and 3-day products, explained
in Richardson et al. (2018a), are extracted based on statistical metrics
within the interval. Higher intervals may only be used only to speed up
processing time, but it is ideal to analyze every image in a stack for the
highest-quality data. The time series will be plotted as an interactive
Plotly object (Sievert et al., 2017) with capabilities of zoom, selection
and scrolling. The user can hide or show any of the chromatic co-
ordinates and their confidence intervals (i.e. deviation within the ROI)
using the checkbox inputs on the side panel. The extracted time series
can also be downloaded as a CSV file containing the filenames, time
information and the data. In addition to the chromatic coordinates,
band ratios (Bradley et al., 2010; Tucker, 1979), excess greenness
(Nijland et al., 2014) and the green-red vegetation index (GRVI)
(Richardson et al., 2013) are also reported in the output file. Other user
defined metrics can be obtained by postprocessing the data included in
the output file. A summary of other indices that might be used for
monitoring phenology is discussed in Richardson et al. (2013).

Fig. 3. Detecting field of view shifts using center line images (CLI). The CLI is built by assembling vertical centerlines of all loaded images together. The user can
visually detect FOV shifts by monitoring sudden changes in the horizon line and / or canopy texture. The user can plot the corresponding image (small image in the
bottom left corner) of each column in the CLI by clicking on the image. The vertical red line indicates the position of the selected image on the CLI. The above
example was generated from the PhenoCam site at armoklahoma. The vertical yellow dashed lines indicate FOV shifts.
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4. Case studies

In the following sections, we use several case studies to explain
different features of xROI. We quantify how xROI performs for handling
data management and extraction tasks. Among the sites in the
PhenoCam network, the number of FOV shifts varies across sites. For
example, the monture PhenoCam site experienced 62 FOV shifts over
the course of 18 years and the acadia PhenoCam site experienced 9
FOV shifts during the same period. Other PhenoCam sites, such as
harvard, with an extremely stable FOV over the period of record (2008-
ongoing), and a strong seasonal cycle due to the deciduous canopy,
present comparatively smaller challenges. We used four PhenoCam
sites, including boundarywaters, pasayten, proctor and sherman, as
our case study examples to illustrate how our software works, and how
it can be used to extract high quality time series data. Site selection in

this document is based on including sites that present various situa-
tions, complexities and processing challenges. The boundarywaters
images were collected from a mixed deciduous and evergreen forest at
Boundary Waters Canoe Area Wilderness, Superior National Forest,
Minnesota, USA. The pasayten images were taken at a mountainous
Ponderosa pine forest at Pasayten Wilderness, Okanogan National
Forest, Washington, USA. The proctor images were taken at a maple-
dominated deciduous forest at University of Vermont, Proctor Maple
Research Center, Underhill, Vermont, USA. The sherman images were
collected from a grassland at Twitchell Island, Antioch, California, USA.
Additional site-specific information is presented in Table 2. We ob-
tained stacks of digital images for the selected sites from the PhenoCam
dataset available from Richardson et al. (2017). Each set contains daily
midday (closest image to the local standard noon) images of the land-
scape over a two-year period. Note that we have also processed the

Fig. 4. Time series extraction module. The figure shows an example site and the associated RCC, GCC, and BCC time series data extracted at a 15-day interval. The
interactive plot facilitates exploratory analysis throughout the time series. The bars indicate 50, 80 or 90 percentiles of the confidence interval across the entire ROI,
depending on the user’s selection. The user can also download the time series in CSV format using the Download button. Image datasets with a finer temporal
resolution will result in a finer time series.

Table 2
Site specific information and descriptions of regions of interest.

Site name Lon. , Lat. Year(s) FOV Shift Date(s) ROI description Vegetation Type

boundarywaters −91.49, 47.94 2008
2009

4/29/2008
5/11/2009
6/9/2009

Grasses in foreground GR

pasayten −119.89, 48.39 2015
2016

12/23/2015 Individual evergreen tree in lower left side of the FOV EN

proctor −72.86, 44.52 2016
2017

12/13/2016 Individual maple tree in near background DB

sherman −121.75, 38.03 2014
2015

8/18/2014
9/3/2014
9/7/2014

The upper cropland/grassland the foreground AG
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higher-frequency data (30-min, Seyednasrollah et al., 2019), but to
detect FOV shifts the daily images are sufficient. All selected sites have
at least one FOV shift occurrence over the course of the collected data.
The case study datasets are available to download from Seyednasrollah
(2019) for reproducing the results presented here.

4.1. Procedure and workflow

Using xROI, we performed two experiments on each image set. In
the first experiment, we used the ROI drawing module to generate an
ROI representing the dominant vegetation cover based on the first
image in the dataset. ROI descriptions for all four sites are explained in
Table 2. The originally drawn ROI’s are shown in Fig. 5. We in-
tentionally assumed there was no FOV shift in the dataset and gener-
ated the GCC time series for two years of data at each site using the time
series extraction module.

In the second experiment, we used the FOV shifts monitoring
module and the CLI processor to visually detect all the FOV shifts per
camera and then readjust the ROIs from the first experiment by adding
new masks for each shift periods (Table 2). The resulting CLI for each
camera is presented in Appendix C: Center-line Images of Study Sites.

The CLI for the case studies are shown in Fig. S2. Using the CLI
processor helped us to detect FOV shifts in the image datasets by
monitoring the horizon line for each image. This is particularly critical
for extracting accurate and meaningful phenological signals from di-
gital repeat photography. The time series obtained in the first and
second experiments are plotted in Fig. 6. Dates when FOV shifts

occurred are indicated with dashed vertical lines. It is seen that ac-
counting for the FOV shifts is essential and greatly enhances the quality
of the derived data, particularly for pasayten and proctor in the second
year of each set of images. Another example of how unadjusted FOV
shifts may reduce data quality is the monture PhenoCam site as it is
discussed in Richardson et al. (2018a).

5. Discussion

We illustrated how different modules of the xROI application work
together to enable an integrated environment for ROI based image
processing. xROI enhances time series extraction from digital repeat
photography datasets in three ways: (1) interactive generation of user-
defined ROI on a sample image, (2) extracting time series data of red,
green and blue chromatic coordinates and their corresponding statis-
tics, and (3) providing a simple way to identify FOV shifts using a center
line image-based approach.

xROI has integrated several processes in a single framework to
produce time series of multiple bands from a stack of digital images.
This is a significant contribution, and greatly reduces the workload
associated with conducting each task using separate software tools.
Importantly, the user can perform the entire image processing workflow
without any knowledge of computer programming or image processing,
using a simple and user-friendly graphical user interface. This is critical,
considering the amount of technical analyses that is being performed in
response to the user’s clicks. Alternatively, more advanced users can use
the low-level xROI functions library to carry out customized analyses

Fig. 5. Original ROI’s drawn for case study sites: (a) boundarywaters, (b) pasayten, (c) proctor; and (d) sherman. As field of view has changed for the sites, regions of
interest may need to be readjusted or redrawn, otherwise the final data may be incorrect, misleading or in low quality.
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using a command-line interface. We believe both approaches will
contribute to advancing the potential for cutting-edge science applica-
tions of digital repeat photography.

The built-in interactive time series extraction module can be used
not only for generating color-based statistics, but also it can be operated
as a real-time evaluation toolkit for drawing the most appropriate ROI.
The user can create several ROI’s and run the time series extraction
module for each one to assess which ROI results in a less noisy time
series or more suitable confidence intervals. To mitigate the impacts of
FOV shifts, the tool can also be used to test candidate ROI masks and
identify which masks are most robust to changes in the camera FOV.
This might be particularly useful when FOV shifts are small, and a
single, well-chosen ROI might suffice. The “interval” input value can be
used to speed-up this process by running the time series extraction

module on a subset of the original image set (i.e. by using larger in-
terval values). Additionally, the confidence interval bars show color
variation for pixels across the ROI at each time step. Relatively lower
ranges of variation indicate more homogeneous color across the ROI.
This might be desired in particular for focusing on a specific object such
as an individual tree in the image.

To handle FOV shifts – as one of the most important challenges in
digital repeat photography – we showed how xROI exploits a simple
method to visualize camera FOV stability using the CLI technique. The
FOV shift detection module plays an essentially important role at sites
where the camera is subject to intentional or accidental FOV shifts. For
example, tower climbers might accidentally kick the camera housing or
wind and vibration might loosen the camera mount. Using the case
studies, we illustrated how the user can readjust ROI masks to correct

Fig. 6. Time series extraction using xROI for four case study sites. The left panel shows the extracted time series, for each dataset. Red (dotted) and green (solid) lines
indicate pre and post mask adjustment using xROI, respectively. Dashed vertical lines indicate FOV shifts. The middle panel shows the cameras’ FOV before a shift
occures. The right panel shows the FOV’s after the shift. ROI’s are shown by yellow polygons.
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for FOV shifts. We also tested detectability of FOV shifts using several
monochromic rasters in the CLI. Both visual interpretations and the
results from the bimodality coefficient (See Appendix D: Bimodality
Analysis of the Monochromic CLI) showed brightness and blue channel
rasters suggest the highest performance in distinguishing canopy from
sky, and hence identifying the horizon line. This was true for all the four
case studies. This may be explained by the greater average difference
values of blue and brightness between canopy and sky. In other words,
sky pixels are usually bright and have high values in the blue channel,
while vegetation pixels are dark and low in the blue channel. Using the
red and green channels showed the lowest power for detecting FOV
shifts. Although this result may not be universal or consistent for a
larger set of sites, it can further be evaluated and utilized in developing
methods for automatic detection of FOV shifts. Our method using the
vertical CLI is not perfect, and one can envision cases where there is
only a horizontal shift in camera FOV, which might not be detected
from the CLI. However, in our experience, the vast majority of FOV
shifts that negatively impact data quality are clearly identified from this
analysis, because it is extremely rare that the plane of an FOV shift is
exactly parallel to the horizon. For this reason, even FOV shifts with a
small vertical component can often be detected through inspection of
the CLI.

Results from using xROI on the four provided example datasets as
case studies showed the final time series were significantly improved by
adjusting the ROI and mask files after each FOV shift. Unadjusted ROI
result in erroneous time series and misleading —if not simply incorrect
—phenological patterns. For instance, unadjusted ROI's at the case
study sites resulted in significant errors in both the magnitude and the
timing of greenness. At boundarywaters, maximum GCC falsely dropped
from 0.48 to 0.44 in 2008 and 0.50 to 0.47 in 2009. The unadjusted ROI
at the same site resulted in 55 days (from 225 to 170) and 97 days (from
167 to 264) bias in the length of the growing season in 2008 and 2009,
respectively. At pasayten and proctor, GCC’s from the unadjusted ROI
did not exhibit any greenup during the growing season of the second
year (2016 at pasayten and 2017 at proctor). At sherman, the un-
adjusted ROI resulted in a false GCC drop (from 0.36 to 0.33) for about
33 days in 2014, which does not correspond to any phenologically or
ecologically relevant change in the state of the canopy. Previous works
have studied ecological drivers that explain the interannual variabilities
of GCC (Richardson et al., 2019, 2018c) and the strong agreement be-
tween transition dates from GCC and those observed on the ground
(Richardson et al., 2018a). An overview of methods and scientific
questions and applications is discussed in Richardson (2018).

Although in this paper, we primarily focused on extracting pheno-
logical time series from datasets of vegetation phenology, xROI can be
used to extract different kinds of time series from individual color
channels or their combinations. For example, the application can also
be utilized for continuous measurements of accumulated snow depth by
delineating an ROI around a measuring stick with a contrasting color to
snow (e.g., black) in the FOV and converting the chromatic coordinates
to the proportion of black and white in the ROI (Farinotti et al., 2010).
Similarly, time series of chromatic coordinates can be used for detecting
water in tidal salt marshes (O'Connell and Alber, 2016), assessing water
saturation status in soil (Silasari et al., 2017), and understanding the
geomorphology of sand dunes (Banaszak and Selesko, 2016). As xROI is

open-source, we hope that the scientific community can develop other
tools built on the present framework to address a wide range of ap-
plications.

6. Conclusion

The xROI application was introduced for extracting color-based time
series for datasets of digital repeat photography. xROI is an R package
with both low-level image processing toolbox and a responsive gra-
phical user interface. As an open-source software, xROI can be run on
several platforms including macOS, Microsoft Windows, and many
Linux distributions. The ready-to-use binaries of xROI are available
from the Comprehensive R Archive Network (CRAN) archive. The most
up-to-date source code can be accessed from the GitHub repository. We
hope that the xROI R package will significantly enhance data quality
and facilitates data extraction and management tasks, primarily for
scientists who use near-surface remote sensing imagery for studying the
environment, including—but not limited to—PhenoCam network ima-
gery.
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Appendix B. Description of ROI list files

This sections explains the formatting of (1) the “ROI list files”, which detail the date and time range over which each binary image mask was
applied in processing the image data for a site; (2) the binary “image mask files”, which delineate the ROI over which the image analysis was
conducted; and (3) sample images for each image mask file. With (1) and (2), which we consider as essential metadata, the time series data sets can
be reproduced from the original image files. A more comprehensive data description is explained in (Richardson et al., 2018a).

The naming convention for the ROI list files in is as follows:

• < sitename>_< veg_type>_<ROI_ID_number> _roi.csv

where sitename is the name of the camera site, as listed in the metadata contained in Data Record 1 (e.g., “coweeta”), veg_type is a two-letter
abbreviation identifying the dominant vegetation within the ROI, e.g. DB for deciduous broadleaf trees (see Table 1), and ROI_ID_number is a
numeric code that serves as a unique identifier to distinguish between multiple ROIs of the same vegetation type at a given site (0001 for the first ROI
list, 0002 for the second, etc.).

Fig. S1. Application flowchart.
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A sample ROI list file (coweeta_DB_0001_roi.csv) is as follows:

#
# ROI List for coweeta
#
# Site: coweeta
# Veg Type: DB
# ROI ID Number: 0001
# Owner: mtoomey
# Creation Date: 2012–09-05
# Creation Time: 11:42:00
# Update Date: 2012–09-05
# Update Time: 11:42:00
# Description: full canopy including deciduous and subdominant conifers
#
start_date,start_time,end_date,end_time,maskfile,sample_image
2011–04-14,00:00:00,2012–11-08,14:31:57,coweeta_DB_0001_01.tif,coweeta_2011_04_08_143030.jpg
2012–11-08,15:01:00,9999–12-31,23:59:59,coweeta_DB_0001_02.tif,coweeta_2012_11_09_113132.jpg

The first 13 lines (beginning with #), document the provenance of the ROI list, and contain a brief description of the vegetation that is delineated by
the associated image masks.

Line 14 lists the column headers for the mask entry rows. The mask entries begin on line 15. For this site there was one minor change in the field
of view, so there are two ROI mask entries. Any additional field of view changes would result in additional rows (mask entries) being appended to the
file. Note that as described in Methods, if the field of view shift is too large or if there are other exogenous events that necessitate distinguishing
between the resulting data sets, a new ROI list (e.g., coweeta_DB_0002_roi.csv) would be created for the site.

For each mask entry, the data fields are:

• start_date (format: YYYY-MM-DD, where MM=01–12 and DD=01–31)
• start_time (format: hh:mm:ss, where hh=00–23, mm=00–59, ss= 00–59)
• end_date (format: same as for start_date)
• end_time (format: same as for start_time)
• mask_file: the filename for the 8-bit TIFF mask file with black for the ROI and white for the region to exclude from calculations
• sample_image: the filename for a sample image in the date range

Note that only images within the date and time ranges (from start_date and start_time to end_date and end_time) listed are included in the
processed data set generated from this list. For end_date, the date code 9999–12-31 is used to keep the processing open-ended.

The naming convention for the image mask files is:

• < sitename>_< veg_type>_<ROI_ID_number> _<mask_index> .tif

Here, themask_indexmatches the entry number in the list (01 for the first entry, 02 for the second entry, etc.). The image mask files are stored in
the TIFF image format (.tif) because of the flexibility that this offers, and because of compatibility with the python PIL library.

Sample images for each mask file have the same naming convention but terminate in a .jpg extension:

• < sitename>_< veg_type>_<ROI_ID_number> _<mask_index> .jpg

Appendix C. Center-line images of study sites

See Fig. S2.
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Appendix D. Bimodality analysis of the monochromic CLI

As we have explained above, the CLI raster in the FOV shift monitoring module can be plotted in true RGB color format, as well as in mono-
chromic color channels (R, G, and B), and brightness, and darkness rasters. The individual bands may display different levels of efficiency for
separating canopy and sky pixels and so the horizon line. This can be highlighted by comparing the bimodality coefficients of each image. To
quantify which binary band performs more reliably for distinguishing between canopy and sky, we ran a bimodality analysis on our datasets. For
each CLI image we calculated the bimodality coefficient (Zhang et al., 2003) of individual color channels and brightness and darkness rasters (Fig.
S3). Higher values of the bimodality coefficient indicate greater difference between the frequency of sky and canopy pixels and therefore bands with
high bimodality coefficient are less challenging to visualize FOV shifts. This simple experiment can help us to select the most appropriate bands for
which the CLI is plotted. We also visually observed visibility of the horizon line in different monochromic rasters. The results suggested that using the
brightness and blue channels can better separate two groups of pixels including sky and canopy pixels than the other bands.

Fig. S2. Center-line images (CLI) are used to detect field of view shifts. Each panel shows the CLI image for case study sites: boundarywaters, pasayten, proctor;
and sherman. Note that at sherman the FOV shifts are generally minor, except for the obvious shifts mid-timeseries.

Fig. S3. Bimodality coefficients for monochromic rasters at different sites. Similar to our visual interpretations, blue channel and brightness images showed the
highest performance to detect FOV shits. Darkness, red and green channels showed the lowest detectability power among all tested rasters.

B. Seyednasrollah, et al. ISPRS Journal of Photogrammetry and Remote Sensing 152 (2019) 132–144

143



References

Alberton, B., Torres, R.D.S., Cancian, L.F., Borges, B.D., Almeida, J., Mariano, G.C., dos
Santos, J., Morellato, L.P.C., 2017. Introducing digital cameras to monitor plant
phenology in the tropics: applications for conservation. Perspect. Ecol. Conserv. 15,
82–90.

Aronson, L., 1995. HTML 3 Manual of Style. Ziff-Davis Publishing Co.
Banaszak, E., Selesko, M., 2016. Tracing the sand dunes: using a combination of pa-

noramic photography and dune pins to track changes in Michigan’s sand dunes over
time.

Baumer, B., Cetinkaya-Rundel, M., Bray, A., Loi, L., Horton, N.J., 2014. R Markdown:
Integrating a reproducible analysis tool into introductory statistics. arXiv preprint
arXiv:1402.1894.

Berra, E.F., Gaulton, R., Barr, S., 2019. Assessing spring phenology of a temperate
woodland: a multiscale comparison of ground, unmanned aerial vehicle and Landsat
satellite observations. Remote Sens. Environ. 223, 229–242.

Bivand, R., Keitt, T., Rowlingson, B., 2018. rgdal: Bindings for the ‘Geospatial’. Data
Abstraction Library.

Bradley, E., Roberts, D., Still, C., 2010. Design of an image analysis website for pheno-
logical and meteorological monitoring. Environ. Modell. Softw. 25, 107–116.

Brown, T.B., Hultine, K.R., Steltzer, H., Denny, E.G., Denslow, M.W., Granados, J.,
Henderson, S., Moore, D., Nagai, S., SanClements, M., 2016. Using phenocams to
monitor our changing Earth: toward a global phenocam network. Front. Ecol.
Environ. 14, 84–93.

Chang, W., Cheng, J., Allaire, J.J., Xie, Y., McPherson, J., 2017. shiny: Web Application
Framework for R.

Crimmins, M.A., Crimmins, T.M., 2008. Monitoring plant phenology using digital repeat
photography. Environ. Manage. 41, 949–958.

de Moura, Y.M., Galvão, L.S., Hilker, T., Wu, J., Saleska, S., do Amaral, C.H., Nelson,
B.W., Lopes, A.P., Wiedeman, K.K., Prohaska, N., 2017. Spectral analysis of amazon
canopy phenology during the dry season using a tower hyperspectral camera and
modis observations. ISPRS J. Photogramm. Remote Sens. 131, 52–64.

Dhodapkar, A.S., Smith, J.E., 2003. Comparing program phase detection techniques.
Proceedings of the 36th annual IEEE/ACM International Symposium on
Microarchitecture. IEEE Computer Society p. 217.

Farinotti, D., Magnusson, J., Huss, M., Bauder, A., 2010. Snow accumulation distribution
inferred from time-lapse photography and simple modelling. Hydrol Process. 24,
2087–2097.

Filippa, G., Cremonese, E., Migliavacca, M., Galvagno, M., Forkel, M., Wingate, L.,
Tomelleri, E., Di Cella, U.M., Richardson, A.D., 2016a. Phenopix: AR package for
image-based vegetation phenology. Agric. For. Meteorol. 220, 141–150.

Filippa, G., Cremonese, E., Migliavacca, M., Richardson, A., Galvagno, M., Forkel, M.,
2016b. phenopix: Pixel Based Phenology.

Gottumukkal, R., Asari, V.K., 2004. An improved face recognition technique based on
modular PCA approach. Pattern Recogn. Lett. 25, 429–436.

Hijmans, R.J., 2017. raster: Geographic Data Analysis and Modeling.
Klosterman, S., Melaas, E., Wang, J., Martinez, A., Frederick, S., O’Keefe, J., Orwig, D.A.,

Wang, Z., Sun, Q., Schaaf, C., 2018. Fine-scale perspectives on landscape phenology
from unmanned aerial vehicle (UAV) photography. Agric. Forest Meteorol. 248,
397–407.

Knox, S.H., Dronova, I., Sturtevant, C., Oikawa, P.Y., Matthes, J.H., Verfaillie, J.,
Baldocchi, D., 2017. Using digital camera and Landsat imagery with eddy covariance
data to model gross primary production in restored wetlands. Agric. Forest Meteorol.
237, 233–245.

Liu, J., Pattey, E., 2010. Retrieval of leaf area index from top-of-canopy digital photo-
graphy over agricultural crops. Agric. Forest Meteorol. 150, 1485–1490.

Mao, J., Phommasak, U., Watanabe, S., Shioya, H., 2014. Detecting foggy images and
estimating the haze degree factor. Journal of Computer Science & Systems Biology
7, 1.

MathWorks, I., 2015. Matlab Image Processing Toolbox (Version 2015).
Migliavacca, M., Galvagno, M., Cremonese, E., Rossini, M., Meroni, M., Sonnentag, O.,

Cogliati, S., Manca, G., Diotri, F., Busetto, L., 2011. Using digital repeat photography
and eddy covariance data to model grassland phenology and photosynthetic CO2
uptake. Agric. Forest Meteorol. 151, 1325–1337.

Mikkonen, T., Taivalsaari, A., 2007. Using JavaScript as a real programming language.
Moore, C.E., Brown, T., Keenan, T.F., Duursma, R.A., Van Dijk, A.I., Beringer, J.,

Culvenor, D., Evans, B., Huete, A., Hutley, L.B., 2016. Reviews and syntheses:
Australian vegetation phenology: new insights from satellite remote sensing and di-
gital repeat photography. Biogeosciences 13, 5085.

Nijland, W., De Jong, R., De Jong, S.M., Wulder, M.A., Bater, C.W., Coops, N.C., 2014.
Monitoring plant condition and phenology using infrared sensitive consumer grade
digital cameras. Agric. Forest Meteorol. 184, 98–106.

O'Connell, J.L., Alber, M., 2016. A smart classifier for extracting environmental data from
digital image time-series: Applications for PhenoCam data in a tidal salt marsh.
Environ Modell Softw 84, 134–139.

Olivera-Guerra, L., Mattar, C., Merlin, O., Durán-Alarcón, C., Santamaría-Artigas, A.,
Fuster, R., 2017. An operational method for the disaggregation of land surface
temperature to estimate actual evapotranspiration in the arid region of Chile. ISPRS

J. Photogramm. Remote Sens. 128, 170–181.
Powell, T.A., 2010. HTML CSS: The Complete Reference, (Complete Reference Series).

McGraw-Hill Osborne, New York, NY.
Richardson, A., Hufkens, K., Milliman, T., Aubrecht, D., Chen, M., Gray, J., Johnston, M.,

Keenan, T., Klosterman, S., Kosmala, M., 2017. PhenoCam Dataset v1. 0: Vegetation
Phenology from Digital Camera Imagery, 2000–2015. ORNL DAAC, Oak Ridge,
Tennessee, USA.

Richardson, A.D., 2018. Tracking seasonal rhythms of plants in diverse ecosystems with
digital camera imagery. New Phytol.

Richardson, A.D., Hufkens, K., Li, X., Ault, T.R., 2019. Testing the Hopkins law of bio-
climatics with PhenoCam data. Appl. Plant Sci.

Richardson, A.D., Hufkens, K., Milliman, T., Aubrecht, D.M., Chen, M., Gray, J.M.,
Johnston, M.R., Keenan, T.F., Klosterman, S.T., Kosmala, M., 2018a. Tracking ve-
getation phenology across diverse North American biomes using PhenoCam imagery.
Sci. Data 5.

Richardson, A.D., Hufkens, K., Milliman, T., Aubrecht, D.M., Furze, M.E., Seyednasrollah,
B., Krassovski, M.B., Latimer, J.M., Nettles, W.R., Heiderman, R.R., Warren, J.M.,
Hanson, P.J., 2018b. Ecosystem warming extends vegetation activity but heightens
vulnerability to cold temperatures. Nature 560, 368–371.

Richardson, A.D., Hufkens, K., Milliman, T., Frolking, S., 2018c. Intercomparison of
phenological transition dates derived from the PhenoCam Dataset V1. 0 and MODIS
satellite remote sensing. Sci. Rep.-UK 8, 5679.

Richardson, A.D., Klosterman, S., Toomey, M., 2013. Near-surface Sensor-derived
Phenology, Phenology: An Integrative Environmental Science. Springer, pp. 413–430.

Sanner, M.F., 1999. Python: a programming language for software integration and de-
velopment. J. Mol. Graph. Model. 17, 57–61.

Seyednasrollah, B., 2017. drawROI: An interactive toolkit to extract phenological time
series data from digital repeat photography. Zenodo. https://doi.org/10.5281/
zenodo.1066588.

Seyednasrollah, Bijan, Swenson, Jennifer J., Domec, Jean-Christophe, Clark, James S.,
2018. Leaf phenology paradox: Why warming matters most where it is already warm.
Rem. Sens. Environ. 209, 446–455.

Seyednasrollah, B., 2019. xROI Example Datasets [Data Set]. Zenodo. http://doi.org/10.
5281/2560686.

Seyednasrollah, B., Young, A.M., Hufkens, K., Milliman, T., Friedl, M.A., Frolking, S.,
Richardson, A.D., 2019. Tracking vegetation phenology across diverse biomes using
PhenoCam imagery. The PhenoCam Dataset v2.0. Sci. Data.

Sievert, C., Parmer, C., Hocking, T., Chamberlain, S., Ram, K., Corvellec, M., Despouy, P.,
2017. plotly: Create Interactive Web Graphics via ‘plotly.js’.

Silasari, R., Parajka, J., Ressl, C., Strauss, P., Blöschl, G., 2017. Potential of time-lapse
photography for identifying saturation area dynamics on agricultural hillslopes.
Hydrol Process.

Sonnentag, O., Hufkens, K., Teshera-Sterne, C., Young, A.M., Friedl, M., Braswell, B.H.,
Milliman, T., O’Keefe, J., Richardson, A.D., 2012. Digital repeat photography for
phenological research in forest ecosystems. Agric. Forest Meteorol. 152, 159–177.

Stephens, H.G., Shoemaker, E.M., Powell, J.W., 1987. In the Footsteps of John Wesley
Powell: An Album of Comparative Photographs of the Green and Colorado Rivers,
1871-1872 and 1968. Johnson Books.

Sunoj, S., Igathinathane, C., Saliendra, N., Hendrickson, J., Archer, D., 2018. Color ca-
libration of digital images for agriculture and other applications. ISPRS J.
Photogramm. Remote Sens. 146, 221–234.

Team, R.C., 2018. R: A Language and Environment for Statistical Computing.
Tucker, C.J., 1979. Red and photographic infrared linear combinations for monitoring

vegetation. Remote Sens. Environ. 8, 127–150.
Turner, R.M., 2003. The Changing Mile Revisited: An Ecological Study of Vegetation

Change with Time in the Lower Mile of an Arid and Semiarid Region. University of
Arizona Press, Tucson.

Warmerdam, F., 2008. The Geospatial Data Abstraction Library, Open Source Approaches
in Spatial Data Handling. Springer, pp. 87–104.

Watson, C.J., Restrepo-Coupe, N., Huete, A.R., 2019. Multi-scale phenology of temperate
grasslands: improving monitoring and management with near-surface phenocams.
Front. Environ. Sci. 7, 14.

Woebbecke, D.M., Meyer, G.E., Von Bargen, K., Mortensen, D., 1995. Color indices for
weed identification under various soil, residue, and lighting conditions. Trans. ASAE
38, 259–269.

Yan, D., Scott, R., Moore, D., Biederman, J., Smith, W., 2019. Understanding the re-
lationship between vegetation greenness and productivity across dryland ecosystems
through the integration of PhenoCam, satellite, and eddy covariance data. Remote
Sens. Environ. 223, 50–62.

Yuan, H., Wu, C., Lu, L., Wang, X., 2018. A new algorithm predicting the end of growth at
five evergreen conifer forests based on nighttime temperature and the enhanced
vegetation index. ISPRS J. Photogramm. Remote Sens. 144, 390–399.

Zhang, C., Mapes, B.E., Soden, B.J., 2003. Bimodality in tropical water vapour. Q. J. R.
Meteor. Soc. 129, 2847–2866.

Zhou, L., He, H.-L., Sun, X.-M., Zhang, L., Yu, G.-R., Ren, X.-L., Wang, J.-Y., Zhao, F.-H.,
2013. Modeling winter wheat phenology and carbon dioxide fluxes at the ecosystem
scale based on digital photography and eddy covariance data. Ecol. Inf. 18, 69–78.

B. Seyednasrollah, et al. ISPRS Journal of Photogrammetry and Remote Sensing 152 (2019) 132–144

144

http://refhub.elsevier.com/S0924-2716(19)30105-4/h0005
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0005
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0005
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0005
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0010
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0025
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0025
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0025
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0030
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0030
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0035
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0035
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0040
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0040
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0040
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0040
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0050
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0050
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0055
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0055
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0055
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0055
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0060
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0060
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0060
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0065
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0065
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0065
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0070
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0070
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0070
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0080
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0080
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0090
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0090
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0090
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0090
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0095
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0095
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0095
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0095
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0100
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0100
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0105
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0105
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0105
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0115
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0115
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0115
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0115
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0125
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0125
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0125
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0125
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0130
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0130
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0130
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0135
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0135
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0135
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0140
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0140
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0140
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0140
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0145
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0145
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0150
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0150
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0150
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0150
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0155
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0155
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0160
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0160
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0165
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0165
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0165
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0165
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0170
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0170
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0170
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0170
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0175
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0175
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0175
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0180
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0180
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0185
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0185
https://doi.org/10.5281/zenodo.1066588
https://doi.org/10.5281/zenodo.1066588
http://refhub.elsevier.com/S0924-2716(19)30105-4/h9000
http://refhub.elsevier.com/S0924-2716(19)30105-4/h9000
http://refhub.elsevier.com/S0924-2716(19)30105-4/h9000
http://doi.org/10.5281/2560686
http://doi.org/10.5281/2560686
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0200
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0200
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0200
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0210
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0210
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0210
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0215
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0215
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0215
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0220
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0220
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0220
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0225
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0225
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0225
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0235
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0235
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0240
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0240
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0240
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0245
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0245
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0250
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0250
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0250
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0255
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0255
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0255
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0260
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0260
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0260
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0260
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0265
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0265
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0265
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0270
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0270
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0275
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0275
http://refhub.elsevier.com/S0924-2716(19)30105-4/h0275

	Data extraction from digital repeat photography using xROI: An interactive framework to facilitate the process
	Introduction
	Application development
	Design and structure
	ROI drawing module
	FOV shifts monitoring module
	Time-series extraction module

	Case studies
	Procedure and workflow

	Discussion
	Conclusion
	Acknowledgements
	Declarations of interest
	Application flowchart
	Description of ROI list files
	Center-line images of study sites
	Bimodality analysis of the monochromic CLI
	References




